
Fakeme
Release 0.0.1

May 28, 2020

Contents

1 Tutorial 3

2 More Examples 5

3 Supported Schemas for Tables 7

4 Output Formats 9

5 User Customisation 11

6 How to add custom fields generators 13

7 Values Generators 15

8 Run generator from Command Line 17

9 Rules for value generating 19
9.1 What is the Rule? . 19

i

ii

Fakeme, Release 0.0.1

in TODO

Please check Examples section More Examples

You can use Fakeme with 2 ways. More flexible is to use from python script with import

from fakeme import Fakeme

Fakeme - main class that you need to call to run data generation.

Minimal that you need to provide to Generator is a tables_list argument.

Fakeme(tables=[()]

)

tables param You must provide a list of tuples: [()]. Each tuple define one table. You must provide table_id and
schema, also (optional) you can provide dataset_id.

If you provide only table_id and schema order does not matter: library check type of elements in tuple. But if you
provide tuple with 3 args: dataset_id, table_id and schema, table_id always must have index after dataset_id this is
correct:

(‘dataset_id’, ‘table_1’, [{‘name’: ‘id’}, {‘name’: ‘value’}])

this is wrong (‘dataset_id will be used as table name): (‘table_1’, ‘dataset_id’, [{‘name’: ‘id’}, {‘name’:
‘value’}])

Contents 1

Fakeme, Release 0.0.1

2 Contents

CHAPTER 1

Tutorial

3

Fakeme, Release 0.0.1

4 Chapter 1. Tutorial

CHAPTER 2

More Examples

from fakeme import Fakeme
from fakeme.fields import FieldRules

STEP 1: Define schemas
schema_one_parts_list = [
{

"type": "STRING",
"name": "part_identification",
"mode": "NULLABLE"

},
{
"type": "STRING",
"name": "ship_type",
"mode": "NULLABLE"

},
{
"type": "STRING",
"name": "price",
"mode": "NULLABLE"

}
]

STEP 2: Add rules for field generation if you want, if not - will be used default
→˓generation rules
FieldRules.user_rules.append(

{"field": "count", "generator": "str(randint(100, 6000))", "len": ""})

"generator" must contains code, that can be executed in Generator module with "eval
→˓" command
to see that methods are exist in Generator that you can use - you can simple just
→˓check fakeme.generator module

define more rule

(continues on next page)

5

Fakeme, Release 0.0.1

(continued from previous page)

ship_type = {"field": "ship_type", "generator": "'Ship ' + text.word()", "len": ""}
FieldRules.user_rules.append(ship_type)

create list of tables, each tuple - one table, values in indexes:
1st - dataset/database name
2nd - table name
3rd - table's schema

list_of_tables = [
('robot_factory', 'parts', schema_one_parts_list),
('robot_factory', 'warehouse', 'warehouse_schema.json') # second schema we will

→˓read from the file
]

STEP 3: define dependencies and generation rules
Fakeme(tables=list_of_tables,

dump_schema=True,
params={'row_numbers': 15}, # how much rows we want to generate
rls stands for relationship - defining relationship between tables,
that field depend on that
rls={'warehouse': {'part_id': {'alias': 'part_identification',

'matches': 1,
'table': 'parts'}}

}).run()

now just run `python space_ship_warehouse_tables.py`

as result you will see 2 json files, that contains same data
in part_identification (in parts.json) and part_id (in warehouse.json) fields

6 Chapter 2. More Examples

CHAPTER 3

Supported Schemas for Tables

Schema is needed for Fakeme to know that columns and of that data types must be generated.

As default, library use Schema style from BigQuery - https://cloud.google.com/bigquery/docs/schemas#creating_a_
json_schema_file but without ‘description’ field.

Usually schema looks like a list of dicts - one dict per column and inside each dict: - ‘name’: column name, -
‘type’: data type of values in column, - ‘mode’: contains information nullabe / required. This field is not sensitive to
capitalization.

Example:

[{
"type": "STRING",
"name": "part_identification",
"mode": "Required"

},
{
"type": "FLOAT",
"name": "ship_type",
"mode": "NULLABLE"

},
{
"type": "INTEGER",
"name": "price",
"mode": "NULLABLE"

}]

If you don’t provide a type, like this:

And Fakeme does not have base rule for generating columns with such name - output will be random string.

But if we have generator for field. For example, with name “price”:

{
"name": "price",

(continues on next page)

7

https://cloud.google.com/bigquery/docs/schemas#creating_a_json_schema_file
https://cloud.google.com/bigquery/docs/schemas#creating_a_json_schema_file

Fakeme, Release 0.0.1

(continued from previous page)

"mode": "NULLABLE"
}

Result will be of float type based on existed Rule for Generating (check rules in fakeme/rules.py).

Schemas from DDL

Supported Databases

• MSSql

• MySql

• PostgreSql

• Oracle DB

• Hive (HQL)

• SQLite

How to fix errors in process of DDL parsing?

How to add new DDL-notation/custom implementation/database ?

8 Chapter 3. Supported Schemas for Tables

CHAPTER 4

Output Formats

9

Fakeme, Release 0.0.1

10 Chapter 4. Output Formats

CHAPTER 5

User Customisation

11

Fakeme, Release 0.0.1

12 Chapter 5. User Customisation

CHAPTER 6

How to add custom fields generators

Find example in:

fakeme/examples/space_ship_parts/space_ship_warehouse_tables.py

If you want to add your new field rule (how to generate it correct), you can do it from your python script runner:

at the bottom of your script (before you call RunGenerator) add:

from fakeme.fields import FieldRules

FieldRules.user_rules.append({“field”: “count”, “generator”: “str(randint(100, 6000))”, “len”: “”})

13

Fakeme, Release 0.0.1

14 Chapter 6. How to add custom fields generators

CHAPTER 7

Values Generators

15

Fakeme, Release 0.0.1

16 Chapter 7. Values Generators

CHAPTER 8

Run generator from Command Line

Example in:

fakeme/examples/cli_usage

Define your generation config in any json file.

It can contain only settings and params that allowed and used in

In example for you already created fakeme_config.json

to run generator just run fakeme and provide correct relative or absolute path to config file

fakeme fakeme_config.json

17

Fakeme, Release 0.0.1

18 Chapter 8. Run generator from Command Line

CHAPTER 9

Rules for value generating

9.1 What is the Rule?

Rule is a description, how Fakeme need to generate Value in the Field.

Rule mapped to field by field name and by default it try auto to decide that

19

	Tutorial
	More Examples
	Supported Schemas for Tables
	Output Formats
	User Customisation
	How to add custom fields generators
	Values Generators
	Run generator from Command Line
	Rules for value generating
	What is the Rule?

