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in TODO

Please check Examples section More Examples

You can use Fakeme with 2 ways. More flexible is to use from python script with import

from fakeme import Fakeme

Fakeme - main class that you need to call to run data generation.

Minimal that you need to provide to Generator is a tables_list argument.

Fakeme( tables=[()]

)

tables param You must provide a list of tuples: [()]. Each tuple define one table. You must provide table_id and
schema, also (optional) you can provide dataset_id.

If you provide only table_id and schema order does not matter: library check type of elements in tuple. But if you
provide tuple with 3 args: dataset_id, table_id and schema, table_id always must have index after dataset_id this is
correct:

(‘dataset_id’, ‘table_1’, [{‘name’: ‘id’}, {‘name’: ‘value’}])

this is wrong (‘dataset_id will be used as table name): (‘table_1’, ‘dataset_id’, [{‘name’: ‘id’}, {‘name’:
‘value’}])
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CHAPTER 1

Tutorial
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CHAPTER 2

More Examples

from fakeme import Fakeme
from fakeme.fields import FieldRules

# STEP 1: Define schemas
schema_one_parts_list = [
{

"type": "STRING",
"name": "part_identification",
"mode": "NULLABLE"

},
{
"type": "STRING",
"name": "ship_type",
"mode": "NULLABLE"

},
{
"type": "STRING",
"name": "price",
"mode": "NULLABLE"

}
]

# STEP 2: Add rules for field generation if you want, if not - will be used default
→˓generation rules
FieldRules.user_rules.append(

{"field": "count", "generator": "str(randint(100, 6000))", "len": ""})

# "generator" must contains code, that can be executed in Generator module with "eval
→˓" command
# to see that methods are exist in Generator that you can use - you can simple just
→˓check fakeme.generator module

# define more rule

(continues on next page)
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(continued from previous page)

ship_type = {"field": "ship_type", "generator": "'Ship ' + text.word()", "len": ""}
FieldRules.user_rules.append(ship_type)

# create list of tables, each tuple - one table, values in indexes:
# 1st - dataset/database name
# 2nd - table name
# 3rd - table's schema

list_of_tables = [
('robot_factory', 'parts', schema_one_parts_list),
('robot_factory', 'warehouse', 'warehouse_schema.json') # second schema we will

→˓read from the file
]

# STEP 3: define dependencies and generation rules
Fakeme(tables=list_of_tables,

dump_schema=True,
params={'row_numbers': 15}, # how much rows we want to generate
# rls stands for relationship - defining relationship between tables,
# that field depend on that
rls={'warehouse': {'part_id': {'alias': 'part_identification',

'matches': 1,
'table': 'parts'}}

}).run()

# now just run `python space_ship_warehouse_tables.py`

# as result you will see 2 json files, that contains same data
# in part_identification (in parts.json) and part_id (in warehouse.json) fields
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CHAPTER 3

Supported Schemas for Tables

Schema is needed for Fakeme to know that columns and of that data types must be generated.

As default, library use Schema style from BigQuery - https://cloud.google.com/bigquery/docs/schemas#creating_a_
json_schema_file but without ‘description’ field.

Usually schema looks like a list of dicts - one dict per column and inside each dict: - ‘name’: column name, -
‘type’: data type of values in column, - ‘mode’: contains information nullabe / required. This field is not sensitive to
capitalization.

Example:

[{
"type": "STRING",
"name": "part_identification",
"mode": "Required"

},
{
"type": "FLOAT",
"name": "ship_type",
"mode": "NULLABLE"

},
{
"type": "INTEGER",
"name": "price",
"mode": "NULLABLE"

}]

If you don’t provide a type, like this:

And Fakeme does not have base rule for generating columns with such name - output will be random string.

But if we have generator for field. For example, with name “price”:

{
"name": "price",

(continues on next page)

7

https://cloud.google.com/bigquery/docs/schemas#creating_a_json_schema_file
https://cloud.google.com/bigquery/docs/schemas#creating_a_json_schema_file


Fakeme, Release 0.0.1

(continued from previous page)

"mode": "NULLABLE"
}

Result will be of float type based on existed Rule for Generating (check rules in fakeme/rules.py).

Schemas from DDL

Supported Databases

• MSSql

• MySql

• PostgreSql

• Oracle DB

• Hive (HQL)

• SQLite

How to fix errors in process of DDL parsing?

How to add new DDL-notation/custom implementation/database ?
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CHAPTER 4

Output Formats
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CHAPTER 5

User Customisation
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CHAPTER 6

How to add custom fields generators

Find example in:

fakeme/examples/space_ship_parts/space_ship_warehouse_tables.py

If you want to add your new field rule (how to generate it correct), you can do it from your python script runner:

at the bottom of your script (before you call RunGenerator) add:

from fakeme.fields import FieldRules

FieldRules.user_rules.append( {“field”: “count”, “generator”: “str(randint(100, 6000))”, “len”: “”})
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CHAPTER 7

Values Generators
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CHAPTER 8

Run generator from Command Line

Example in:

fakeme/examples/cli_usage

Define your generation config in any json file.

It can contain only settings and params that allowed and used in

In example for you already created fakeme_config.json

to run generator just run fakeme and provide correct relative or absolute path to config file

fakeme fakeme_config.json
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CHAPTER 9

Rules for value generating

9.1 What is the Rule?

Rule is a description, how Fakeme need to generate Value in the Field.

Rule mapped to field by field name and by default it try auto to decide that
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